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Profilin-1 (Pfn1) is a ubiquitously expressed actin-monomer
binding protein that has been linked to many cellular activities
ranging from control of actin polymerization to gene
transcription. Traditionally, Pfn1 has been considered to be
an essential control element for actin polymerization and cell
migration. Seemingly contrasting this view, a few recent
studies have shown evidence of an inhibitory action of Pfn1 on
motility of certain types of carcinoma cells. In this review, we
summarize biochemistry and functional aspects of Pfn1 in
normal cells and bring in newly emerged action of Pfn1 in
cancer cells that may explain its context-specific role in cell
migration.

Introduction

Profilins (Pfns) constitute a class of evolutionarily conserved small
actin-binding proteins which have been linked to almost every
aspect of cellular functions including proliferation, survival,
motility, endocytosis and membrane trafficking, mRNA splicing
and gene transcription. In mammals, four Pfn genes (Pfn1, -2, -3
and -4) have been discovered to date. Pfn1 is the founding
member of the family and ubiquitously expressed in all cell types
except skeletal muscle.1-3 Gene knockout of Pfn1 in mice leads to
embryonic lethality at a very early stage (2-cell stage) of
development thus indicating its absolutely essential role in
embryonic cell survival and/or proliferation.4 In vertebrates, two
alternatively spliced variants of Pfn2 (Pfn2a and Pfn2b) have been
identified. Even though Pfn2a (the major form) transcript is
detected in a wide variety of tissues, the actual protein expression
occurs predominantly in brain. The rare isoform Pfn2b is not
expressed during embryogenesis but its mRNA is detectable in a
limited number of adult tissues including skin, kidney and liver.5,6

Two additional splice variants which are capable of coding
truncated forms of Pfn2 have also been documented in the
literature; whether these variants are actually expressed is not
known.6 An exception to this expression pattern of Pfn2 is seen in
birds where this protein is ubiquitously expressed.7 Unlike Pfn1,
genetic ablation of Pfn2 in mice does not compromise the overall

embryonic development but leads to neurological phenotypes
further confirming importance of Pfn2 function predominantly in
neuronal system in vertebrates.8 Finally, expressions of Pfn3 and
Pfn4 appear to be restricted to testis with the latter being
implicated during spermatogenesis.9,10

In this review, we will first summarize biochemical and
functional aspects of Pfn1, the most widely studied Pfn isoform in
the literature. For brevity and focus, we will limit our discussion
primarily to its role in the regulation of actin dynamics and cell
motility, introducing recently emerged counter-intuitive findings
on Pfn1’s effect on certain cancer cells and how that could
translate to new models of cell motility regulation by Pfn1.

Pfn1 Biochemistry

Despite a fairly low sequence homology, a remarkable structural
similarity exists between the different variants of Pfn suggesting
conserved ligand interactions of these members. In general, Pfns
bind to three major classes of ligands: actin, proteins containing
poly-L-proline (PLP) stretches and phosphoinositide (PPI)-based
lipids (the only exception to this is Pfn4, which does not bind the
first two types of ligands). Biochemical features of each of these
interactions are summarized below.

Dual effects of Pfn1 on actin polymerization in vitro and in
vivo. Pfn1 (mol wt: 12–15 kD) was originally identified as an
actin-sequestering protein that forms a 1:1 complex with
monomeric actin (G-actin) and prevents actin from polymeriza-
tion.11 Consistent with this initially proposed actin-sequestering
function of Pfn, it was shown that simultaneous gene disruption
of Pfn1 and Pfn2 elevates F-actin content in Dictyostelium
amoebae, and conversely, increasing Pfn1 level in yeasts and NRK
(normal rat kidney) fibroblasts results in loss of F-actin.12-14

However, several important biochemical findings related to Pfn1’s
effect on actin polymerization suggested that Pfn1’s action on
actin dynamics is more complex than it was originally conceived.
Markey et al. demonstrated that the nucleation (lag) phase of actin
polymerization in the presence of Pfn1 is shortened by spectrin-
actin-band 4.1 complex (a nucleating complex that allows actin
polymerization from the barbed end), but is lengthened by vilin (a
nucleator that allows actin polymerization from the pointed
end).15 This observation for the first time suggested a possible
asymmetric action of Pfn1 on kinetic regulation of barbed vs.
pointed ends of actin filaments. Subsequently, a number of
studies from different laboratories revealed that while Pfn1
strongly inhibits spontaneous nucleation and elongation at the
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slow-growing pointed ends of actin filaments, Pfn1:actin complex
can add to the barbed ends and elongate actin filaments.16-18 Since
artificially cross-linked Pfn1:actin complex interferes with fila-
ment elongation, it has been postulated that during filament
elongation, Pfn1:actin complex initially binds to the barbed ends
of actin filaments and subsequently, Pfn1 dissociates leaving the
actin molecule behind.19,20 Two other biochemical properties of
Pfn1 presumably further contribute to its actin polymerizing
ability. First, Pfn1 can stimulate nucleotide exchange (ADP to
ATP) on G-actin21 and this potentially accelerates regeneration of
polymerization-competent actin monomers (i.e., ATP-G-actin)
from disassembling filaments. Second, Pfn1, when bound to
actin, inhibits the ATPase activity of actin and this could also
effectively increase the concentration of ATP-actin thus facilitat-
ing actin filament elongation.22 Given that intracellular concen-
tration of Pfn1 in most cells is also not sufficient to account for
G-actin content via sequestration activity, it was therefore
proposed that the primary in vivo function of Pfn1 might be to
actually promote actin polymerization. Several cell-based experi-
mental observations are in alignment with this alternatively
proposed function of Pfn1. For example, when Pfn1 expression is
silenced, there is an overall reduction in the F-actin content in
several cell types (example: human vascular endothelial cells, lung
epithelial cells, breast cancer cells) and conversely, F-actin level
increases in response to overexpression of Pfn1 as demonstrated in
CHO (chicken hamster ovary) cells.23-27

In summary, Pfn1 can have a dual effect on actin polymerization
depending on its concentration relative to that of G-actin and free
barbed ends of actin filaments. If the barbed ends of actin filaments
are blocked by capping proteins, Pfn1 can simply function as an
actin-sequestering protein preventing actin from polymerizing.
However, when the barbed ends are free, Pfn1 can promote actin
assembly provided sufficient pool of ATP-actin is available for
polymerization. Cell-specific differences in the abundance of other
G-actin-sequestering proteins (such as thymosin β4) and expres-
sion/activity of barbed-end capping proteins may explain the basis
for differential effects of loss of Pfn1 on the overall actin
polymerization between different cell types.

PLP interaction. A distinguishing biochemical feature of Pfn is
its ability to bind PLP sequences and this enables use of PLP-
affinity chromatography for purification of Pfn from cellular
extracts. PLP binding involves both N and C termini of Pfn1, and
does not interfere with its actin-binding activity. Most bona fide
cellular ligands of Pfn contain multiple PLP motifs, each
comprising of at most 3–5 prolines flanked by a glycine or an
alanine residue.1,28 On a chronological scale, VASP (vasodilator
stimulated phosphoprotein) was the first PLP-domain bearing
protein to be identified as a Pfn ligand.29 Since then, a large
number of PLP ligands of Pfn1 have been identified which vary
with respect to their sub-cellular localization and/or function. In
the cytoplasmic compartment, Pfn1 interacts with important
regulators of actin dynamics and organization [N-WASP (neural
Wiskott-Aldrich syndrome protein), WAVE (WASP-associated
verprolin homology protein), Diaphanous, Mena (mammalian
enabled)/VASP/Evl (enabled/VASP like), palladin, RIAM (Rap1
GTP-interacting adaptor molecule)/lamellipodin],30-36 cell-cell

adhesion (AF-6),37 and membrane trafficking [VCP (valocin
containing protein), clathrin, huntingtin].38,39 Nuclear ligands of
Pfn1 identified thus far include p42-POP (a myb-family
transcription factor),40 SMN (survival motor neuron protein—
involved in small ribonucleoprotein processing and transport)41

and exportin-6 (involved in nuclear export of actin).42 Functional
diversity of these PLP ligands places Pfn1 at the crossroads of
many physiological activities in cells ranging from actin
cytoskeletal organization to gene transcription.

PPI interaction. Pfn1’s binding to phosphatidylinositol-mono-
phosphate [PI(4)P] and phosphatidylinositol-4,5-bisphosphate
[PI(4,5)P2] reconstituted into lipid vesicles in vitro initially
suggested that Pfn1 may have an ability to interact with
membrane PPIs in cells.43 The actual membrane localization of
Pfn1 was confirmed by ultrastructural immunolocalization in
human leukocytes and platelets which showed that a small sub-
cellular pool of Pfn1 dynamically associates with the inner leaflet
of the plasma membrane.44 In yeasts, it was subsequently shown
that inositol depletion results in translocation of Pfn1 from the
plasma membrane to the cytosol thus suggesting that membrane
localization of Pfn1 is mainly conferred by its PPI-interaction.45

Besides PI(4)P and PI(4,5)P2, Pfn1 can also bind to lipid products
of PI3-kinase or D3-PPIs {PPIs containing phosphates at
D3-position of the inositol ring; example: phosphatidylinositol-
3,4-bisphosphate [PI(3,4)P2], and phosphatidylinositol-3,4,5-
triphosphate [PI(3,4,5)P3 or PIP3]}, and in fact, with much
higher affinity than that of PI(4,5)P2, at least, in vitro.46,47 Since
none of these binding experiments have been performed in actual
cells, which of these PPI species is (are) responsible for membrane
association of Pfn1 in vivo has not been conclusively determined
yet. Given that PI(4,5)P2 is present in cells at a much higher
abundance than D3-PPIs, we can speculate that in vivo
membrane association of Pfn1 is predominantly through its
PI(4,5)P2 binding, and other types of PPI interaction may occur
transiently under conditions which promote D3-PPI synthesis,
such as, in response to growth-factor (EGF, PDGF and IGF)
stimulation.

PPIs not only bind to Pfn1, but can also bind to Pfn1:actin
complex causing rapid dissociation of this complex.43 Supporting
this observation, a mutagenesis study further revealed that a point
mutation on human Pfn1 that disrupts its PPI-binding also
dramatically impairs its actin interaction.48 Based on these
findings, it was concluded that that PPI-binding region of Pfn1
overlaps with its actin-binding site. A similar competitive
interaction between PI(4,5)P2 and PLP-ligands for Pfn1 was
discovered through mutagenesis experiments and it was proposed
that an additional region neighboring the PLP binding site in the
C-terminal helix of Pfn1 may also be involved in PPI binding.49,50

Existence of this additional PPI-binding region on Pfn1 explains
the basis for a ternary complex formation between covalently
cross-linked Pfn1:actin and PI(4,5)P2.51

Context-Specific Effect of Pfn1 in Cell Motility

Pfn1’s role in cell migration has been examined in both lower and
higher eukaryotic model systems using various loss-of-function
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strategies. Gene deletion of Pfn1 and Pfn2 resulting in impaired
motility of Dictyostelium amoebae produced the first direct
evidence of Pfn’s requirement in cell migration. In this unicellular
eukaryotic organism, Pfn1 knockout (K/O) alone failed to
produce any phenotype likely because of compensatory action
of Pfn2.12 Effect of Pfn depletion in multi-cellular organism was
first analyzed in drosophila where deletion of chickadee (encodes
Pfn1) led to late-stage embryonic lethality; viable chickadee alleles
exhibited aberrant actin assembly and impaired cell migration.52

Similarly, gastrulation defects were observed in Xenopus and
zebrafish when Pfn1 expression was downregulated through
antisense morpholinos.53,54 Relevant to mammalian cell systems, it
has been shown that loss of expression or disruption of ligand
interactions of Pfn1 causes impaired migration/invasion and
capillary morphogenesis of human vascular endothelial cells, and
defects in neurite outgrowth.24,26,55,56 Very recently, cre/lox-based
gene deletion approach has been utilized to study the effect of
tissue-specific loss of Pfn1 in vivo. For example, Pfn1 deletion in
chondrocyte leads to impaired migration, and results in
chondrodysplasia and stunted bone growth in mouse.57 Pfn1
ablation in brain inhibits radial migration of cerebellar granular
neurons and causes cerebellar hypoplasia in mouse.58 All of these
studies point to a general pro-migratory function of Pfn1.

Seemingly contrary to the essential role of Pfn1 in cell
migration in the physiological contexts, a number of studies have
reported that various invasive adenocarcinomas (breast, hepatic
and bladder) exhibit Pfn1 downregulation when compared with
their normal counterparts.59-62 We surprisingly found that breast
cancer cells and even normal human mammary epithelial cells
(HMEC) display hypermotile phenotype when Pfn1 expression is
suppressed, and conversely, overexpression of Pfn1 suppresses
breast cancer cell motility.25,63 Similar apparent inverse correlation
between Pfn1 expression and tumor cell motility has also been
documented for hepatocarcinoma cells.61 These unexpected
findings in carcinoma cells have implied that how loss of Pfn1
alters cellular phenotype is highly context-dependent.

Actin-Dependent Function of Pfn1 in Cell Motility

Cell motility is a complex integration of several discrete
biomechanical events including lamellipodial or pseudopodial
protrusion (powered by actin polymerization), stabilization of
protrusion by formation and maturation of integrin-based
adhesions, forward propulsion of cell body (driven by actomyosin
contractility) and finally, release of cell rear (mediated by de-
adhesion). Because of its critical role in actin polymerization,
Pfn1’s function has been most widely studied in the context of
regulation of membrane protrusion. Actin-driven intracellular
motility of bacterial pathogens has been an attractive model
system for studying biochemical and biophysical aspects of
lamellipodial protrusion of motile cells. In these biomimetic
assays, propulsion speed of bacterial pathogens (analogous to
velocity of membrane protrusion in motile cells) is dramatically
reduced in the absence or upon functional loss of Pfn1.64-66

Consistent with these observations, it has been further shown that
Pfn1 depletion can cause defects in membrane extension and

slower velocity of protrusion, and these phenotypes can only be
rescued by re-expression of fully functional Pfn1 but not mutants
that lack actin or PLP binding. These data demonstrated that
Pfn1 is an essential driver of membrane protrusion during cell
migration, and further show the importance of actin and PLP
interactions in this aspect of Pfn1’s function.24,26

Membrane protrusion requires de novo actin nucleation
followed by filament elongation and/or elongation of pre-existing
filaments, catalyzed by at least three major classes of actin-binding
proteins including N-WASP/WAVE, Ena/VASP and formins. A
common feature of these different classes of proteins is the
presence of PLP domains which allows them to interact with
Pfn1. In vitro kinetic experiments have shown that low
concentration of Pfn1 (~1–5 mM) can stimulate actin polymer-
ization by N-WASP and Ena/VASP.36,67 Functional co-operativity
of Pfn1 with these proteins also appears to be true in vivo. For
example, N-WASP-induced membrane protrusion and bacterial
pathogen motility requires functional actin and PLP interactions
of Pfn1.65,68 Overexpression of a dictyostelium homolog of WASP
with PLP deletion dramatically impairs the protrusive ability and
chemotaxis of the organism.69 Similarly, Ena/VASP-induced
motility of bacterial pathogens is attenuated when its PLP
domain is deleted.70 Consistent with these data, colocalization and
FRET studies have shown evidence of prominent VASP–Pfn1
interaction at the sites of dynamic actin polymerization near the
leading edge in migrating cells.71,72 Together, these findings
support a widely accepted model that interaction of Pfn1:actin
complex to the promoters of actin nucleation and elongation at
the leading edge facilitates sub-membranous actin polymerization
through barbed-end elongation and promotes membrane protru-
sion during cell migration. An alternative mechanism of how Pfn1
regulates membrane protrusion has been proposed in the literature
based on the effect of Pfn1 in millimolar concentration range on
actin polymerization. Even though the overall cellular concentra-
tion of Pfn1 ranges from 10–50 mM in most cells, it has been
suggested that presence of multiple Pfn1-binding sites on various
actin-regulatory proteins (16–20 on VASP, 12 on N-WASP) and
membrane PI(4,5)P2 (up to 5) can potentially generate a local
milieu of Pfn1 in the millimolar concentration range near the
leading edge in cells. Pfn1 at this concentration range increases the
off-rate of actin monomers at the barbed ends of actin filaments
and actually causes F-actin depolymerization via competing with
barbed-end capping proteins. Paradoxically, this faster rate of
deplomerization can promote net polymerization by accelerating
ATP-replacement of actin monomers.73-76 Even though there is a
mechanistic difference between the two models, both build upon
the fundamental idea of Pfn1 utilizing its actin and PLP
interactions to promote net actin polymerization at the leading
edge and in turn, driving membrane protrusion during cell
migration.

Actin-Independent Function of Pfn1 in Cell Motility

Cumulative findings of two recent studies from our group have
uncovered a novel actin-independent mechanism by which Pfn1
can negatively regulate breast cancer cell motility.63,77 Specifically,
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those studies showed that the Pfn1 depletion in breast cancer cells
leads to a hypermotile phenotype through enhancing membrane
targeting of lamellipodin (Lpd—a PPI-binding protein which
recruits Ena/VASP to the leading edge33,78) and in turn,
augmenting Ena/VASP localization at the leading edge.
Interestingly, all of these phenotypes of Pfn1-deficient cells were
rescued by re-expression of Pfn1 or even its mutants that were
deficient in actin or PLP binding, but not a mutant defective in
PPI interaction. This suggested that Pfn1 suppresses breast cancer
cell motility through its PPI interaction via negatively regulating
recruitment of Lpd-Ena/VASP complex to the leading edge. Lpd
plays an important role in membrane protrusion through
downstream action of Ena/VASP,33,78 and among the different
Ena/VASP proteins, at least, Mena has been shown to be a critical
player in breast cancer invasion and metastasis.79-83 Thus,
controlling Lpd-Ena/VASP recruitment to the leading edge
clearly seems to be an attractive mechanism to regulate breast
cancer cell motility which Pfn1-deficient condition takes
advantage of.

So, how does Pfn1:PPI interaction control membrane
recruitment of Lpd? Lpd contains a pleckstrin-homology (PH)
domain that displays selective affinity for PI(3,4)P2.33 PI(3,4)P2 is
also generated at the sites of Lpd recruitment in cells.84 Thus,
PI(3,4)P2 appears to be a key PPI for membrane docking of Lpd.
Since Pfn1 can bind to PI(3,4)P2, one possibility is that Pfn1 can
compete with Lpd for PI(3,4)P2 binding and therefore, in the
absence of Pfn1, Lpd:PI(3,4)P2 interaction is increased. While
this model is conceptually simple, the actual demonstration of this
mechanism in cells is not trivial and has not been examined yet.
However, correlated with Pfn1’s inhibitory effect on Lpd
recruitment to the membrane, we demonstrated that membrane
accumulation of PI(3,4)P2 at the leading edge in breast cancer
cells is downregulated by Pfn1:PPI interaction.77 At present, the
underlying mechanism of how Pfn1 influences membrane
accumulation of PI(3,4)P2 remains unknown. Based on previous
evidence of Pfn1’s ability to inhibit PI(4,5)P2 hydrolysis in
vitro,85,86 and reduced PtdIns(3,4,5)P3 generating ability in breast
cancer cells upon Pfn1 overexpression,87 one can speculate that
Pfn1:PI(4,5)P2 interaction somehow protects PI(4,5)P2 from its
natural turnover including PI3K-mediated conversion to PIP3 and
subsequent generation of downstream PPIs such as PI(3,4)P2.
Overall, these findings present an alternative actin-independent
modality of Pfn1’s control of cell motility in which Pfn1:PPI
interaction negatively regulates PI(3,4)P2 [possibly by putting a
brake on PI(4,5)P2 turnover] and blocks PI(3,4)P2-dependent
recruitment of other motility-regulatory protein complexes (such
as Lpd/Ena-VASP complex) to the plasma membrane.

Interestingly, Pfn1’s inhibitory action on Lpd recruitment to
the membrane does not appear to be restricted to only those cell
types where loss of Pfn1 creates a hypermotile phenotype (e.g.,
breast cancer and normal human mammary epithelial cells). In
fact, Pfn1 depletion causes similar membrane enrichment of Lpd-
Ena/VASP in human vascular endothelial cells even though the
overall motility is actually impaired suggesting that Pfn1’s control
of Lpd localization is a conserved mechanism.63,77 Although
increased Ena/VASP activity at the leading edge generally

correlates with faster membrane protrusion, its net effect on cell
motility has been shown to be context-dependent. For example,
in the case of fibroblasts, Ena/VASP-promoted lamellipodial
protrusions are unproductive for forward movement because of
their increased tendency of withdrawal and this translates to a
slower overall migration speed. At the molecular level, this is
thought to be due to an antagonistic action of Ena/VASP on the
capping protein.88,89 Essentially, higher Ena/VASP activity at the
front leads to generation of longer actin filaments which also have
propensity to buckle causing withdrawal of protrusions. By
contrast, in rapidly moving fish scale keratocytes, Ena/VASP
localization to the leading edge positively correlates with the
protrusion speed as well as the overall speed of migration.90

Analyses of protrusion dynamics in breast cancer cells showed that
Pfn1 depletion causes a reduction in the actual protrusion speed
but this is offset by a marked increase in the persistence of
protrusion causing a net result of increased forward movement.
However, inhibiting Ena/VASP function virtually obliterates the
protrusive ability of Pfn1-deficient cells.63 Therefore, it appears
that Pfn1-deficient breast cancer cells utilizes Ena/VASP
enrichment at the leading edge as a strategy to overcome
protrusion defects which would have occurred otherwise. So,
why should Ena/VASP-driven protrusion in Pfn1-depleted breast
cancer cells display increased persistence while in fibroblasts, it
does not? When a cell generates a lamellipodial protrusion,
whether the protrusion will sustain or undergo withdrawal
depends on how efficiently it is stabilized by cell-substrate
adhesion. Therefore, adhesion dynamics may play a key role in
determining how Ena/VASP recruitment to the leading edge
translates to the overall cell motility. Perhaps in Pfn1-depleted
breast cancer cells, the intrinsic adhesion dynamics sets a stage for
Ena/VASP-driven activity at the leading edge favorable for overall
cell motility.

Is There a Unifying Theory to Explain
the Context-Specific Role of Pfn1 in Cell Motility?

We can construct a simple mechanistic model describing two
potential mechanisms by which Pfn1 can regulate cell motility. On
one hand, Pfn1, when not bound to PPIs, facilitates sub-
membranous actin polymerization at the leading edge catalyzed by
various PLP-domain bearing actin regulators (e.g., N-WASP and
Ena/VASP) and this action of Pfn1 has a positive effect on the actual
velocity of membrane protrusion. On the other hand, Pfn1, when
bound to PPIs, not only prevents its interaction with actin, but also
inhibits Ena/VASP recruitment to the leading edge through limiting
membrane availability of PI(3,4)P2 for Lpd, and this has a negative
impact on the actual velocity of protrusion. Therefore, the net action
of Pfn1 on the overall cell motility should depend on the relative
stoichiometry of PPI-bound vs. -unbound pool of Pfn1 in the
immediate vicinity of the plasma membrane, and how effectively
protrusion is coupled to adhesion to generate productive motility
(Fig. 1). Cell-specific differences in adhesion dynamics and
intracellular signaling that regulate stoichiometric control of PPI-
bound vs. -unbound pool of Pfn1 could very well explain the
context-specific role of Pfn1 in cell migration.
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Conclusion and Outlook

Even after many years of extensive research devoted to Pfn1, it
continues to be an enigmatic molecule to cell biologists. Last three
decades of research heavily focused on Pfn1’s control of actin
polymerization. Recent studies demonstrating differential effect of
Pfn1 on motility of normal vs. cancer cells now force us to look
beyond the traditional cytoskeletal function of Pfn1, particularly
stimulating thoughts on an alternative role of Pfn1 as a modulator
of PPI signaling at the membrane-cytosol interface and how that
might impact cell motility.

Given the functional diversity of PLP ligands of Pfn1, it is
also unlikely that Pfn1 controls cell migration solely through
regulating lamellipodial dynamics. For example, it is known
that Pfn1 regulates nucleo-cytoplasmic shuttling of actin via its
interaction with exportin (a nuclear exporter of actin).42

Activation of serum-response factor (SRF), a transcription
factor that regulates many of serum-inducible genes, is

inhibited by G-actin. Consistent with actin polymerization
activity of Pfn1, a previous study had reported that SRF
activation in cells can be upregulated dramatically by over-
expression of wild-type but not an actin-binding deficient
mutant of Pfn1.91 Pfn1 has also been shown to interact directly
with transcription factor in the nucleus and modulate gene
expression.40 Therefore, nuclear activities of Pfn1 may also play
significant role in cell migration through influencing gene
expression either in SRF-dependent or -independent mechan-
isms. A comprehensive understanding of these functions may
provide further insights on the molecular basis for context-
specific effect on Pfn1 in cell migration.
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Figure 1. A schematic model integrating actin-dependent and -independent modes of Pfn1’s regulation of cell motility. In this model, actin-dependent
function refers to the action of Pfn1 pool in the vicinity of the membrane which is not physically interacting with PPIs and this mainly involves positive
regulation of N-WASP-Arp2/3- and Ena/VASP-mediated actin polymerization. The actin-independent function refers to the action of PPI-bound pool of
Pfn1, and this involves negative regulation of Ena/VASP recruitment to the leading edge through limiting membrane availability of PI(3,4)P2 for Lpd,
either by affecting the metabolic turnover of PI(4,5)P2 and thus downregulating PI(3,4)P2 generation and/or direct binding competition.
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